Extremal and Probabilistic Graph Theory Lecture 19 May 10nd, Tuesday

Lemma 19.1 (Embedding Lemma). Let $H = (A \cup B, F)$ be a bipartite graph in which |A| = a, |B| = b, and the vertices in B have degree at most r. If G is a graph with a vertex subset U with |U| = a such that all subsets of U of size r have at least a + b common neighbors, then H is a subgraph of G.

Definition 19.2. A topological copy of a graph H is a graph formed by replacing edges of H by internally vertex disjoint paths. If each of the paths replacing the edges of H has exactly t internal vertices, it is called a *t*-subdivision of H.

Theorem 19.3. If G is a graph with n vertices and ϵn^2 edges, then G contains a 1-subdivision of a complete graph with $a = \epsilon^{3/2} n^{1/2}$ vertices.

Proof. $d(G) = 2\epsilon n$. Let r = 2, $t = \frac{\log n}{2\log 1/\epsilon}$ and $m = a + {a \choose 2}$, $\epsilon \le 1/2$,

$$\frac{d^t}{n^{t-1}} - \binom{n}{r} \left(\frac{m}{n}\right)^t \ge \frac{(2\epsilon n)^t}{n^{t-1}} - \frac{n^2}{2}\epsilon^{3t} = 2^t n^{1/2} - \frac{1}{2}n^{1/2} \ge n^{1/2} \ge \epsilon^{3/2} n^{1/2}.$$

Therefore we can apply Lemma 18.1 with these parameters to find a vertex subset U of G with |U| = a such that every pair of vertices in U have at least m common neighbors. Complete the proof using Lemma 19.1.

N. Alon, M. Krivelevich and B. Sudakov show that an *n*-vertex graph G with ϵn^2 edges contains a 1-subdivision of a complete graph with $\frac{\epsilon}{4}n^{1/2}$ vertices. The power of ϵ cannot be improved.

Definition 19.4. For a graph H, the Ramsey number r(H) is the minimum positive integer N such that every 2-coloring of the edges of K_N contains a monochromatic copy of H.

Definition 19.5. The *r*-cube Q_r is the *r*-regular graph with 2^r vertices whose vertex set consists of all binary vectors $\{0, 1\}^r$ and two vertices are adjacent if they differ in exactly one coordinate.

Theorem 19.6. $r(Q_r) \le 2^{3r}$.

Proof. In any 2-edge-coloring of K_N , the denser of the two colors has at least $\frac{1}{2} {N \choose 2}$ edges. Let $N = 2^{3r}$, let G be the graph of the densest color, so

$$d(G) \ge \frac{2 \times \frac{1}{2} \binom{N}{2}}{N} = N - 1 \ge 2^{-\frac{4}{3}} N.$$

Let $t = \frac{3}{2}r$, $m = 2^{r}$, and $a = 2^{r-1}$, we have

$$\frac{d^t}{N^{t-1}} - \binom{N}{r} \left(\frac{m}{N}\right)^t \ge 2^{-\frac{4}{3}t}N - N^{r-t}\frac{m^t}{r!} \ge 2^r - 1 \ge 2^{r-1}.$$

Therefore, applying Lemma 18.1 we find a subset U of size 2^{r-1} such that every set of size r in U has at least 2^r common neighbors. Complete the proof by Lemma 19.1.

Let G = (V, E), $R \in V^r$ is a sequence of r vertices of V with replacement $N(R) = \bigcap_{v \in R} N(v)$ and d(R) = |N(R)|.

Definition 19.7. *R* is *b*-rich if $d(R) \ge b$ and *b*-poor if d(R) < b. A set $Z \subset V$ is (r, b)-rich if every sequence in Z^r is *b*-rich.

Lemma 19.8 (Two-sided version). Let $r, s, t \ge 1$ and let G be bipartite graph with average degree d and parts U and V of size n. Suppose $n^{r-s+s^2}d^{-s^2}(t-1)^s < \frac{1}{4}$. Then there exists $X \subset U$, $Y \subset V$ of size at least $4^{-\frac{1}{s}}d^sn^{1-s}$ such that every X and Y are (r,t)-rich in G[X,Y].

Proof. Let $\mathcal{F} = \{(S_U, S_V) | S_U \in U^s, S_V \in V^s, \text{ and } G[S_U, S_V] \text{ is a complete bipartite graph.} \}$ Let $N = |\mathcal{F}|$, then

$$\sum_{S \in U^s} d(S) = \#\{(S, v) | S \in U^s, v \in V, \text{ and } v \in N(S)\}$$
$$= \sum_{v \in V} d(v)^s \ge n \cdot \left(\frac{\sum_{v \in V} d(v)}{n}\right)^s = nd^s,$$
$$N = \sum_{S \in U^s} d(S)^s \ge n^s \left(\sum_{s \in U^s} \frac{d(S)}{n^s}\right)^s$$
$$= n^{s-s^2} \left(\sum_{S \in U^s} d(S)\right)^s = n^{s-s^2} \left(\sum_{v \in V} d(v)^s\right)^s$$
$$\ge n^{s-s^2} n^s d^{s^2} = n^{2s-s^2} d^{s^2}.$$

Uniformly select sequences $(S_U, S_V) \in \mathcal{F}$, let $X = N(S_U)$, $Y = N(S_V)$. A sequence $A \in X^r$ is t-poor if $|N(A \cup S_V)| < t$ and t-rich otherwise. A sequence $A \in X^r$ is t-rich $\Leftrightarrow |N(A \cup S_V)| \ge t \Leftrightarrow |N(A) \cap Y| \ge t$. The expected number of t-poor sequence in X^r is

$$\frac{1}{N} \#\{(S_U, S_V, A) | A \in N(S_U)^r, \text{ and } A \text{ is } t\text{-poor}\}\$$

$$= \frac{1}{N} \sum_{A \in V^r} \sum_{S' \in V^s} \#\{S : S \in U^s, S \subset N(A \cup S')\}\$$

$$\leq \frac{1}{N} n^r n^s (t-1)^s \leq n^{s^2-2s} d^{-s^2} n^{r+s} (t-1)^s < \frac{1}{4}.$$

Therefore the probability that X^r contains a *t*-poor sequence is less than $\frac{1}{4}$.

A similar statement holds for Y. Then we have with probability $> \frac{1}{2}$ in G[X, Y] X and Y are both (r, t)-rich. (*)

Let $m = 4^{-\frac{1}{s}} d^{s} n^{1-s}$, then

$$P(|X| < m) = \frac{1}{N} \sum_{S \in V^s, d(S) < m} d(S)^s < \frac{1}{N} n^s m^s \le n^{s^2 - 2s} d^{-s^2} n^s \cdot \frac{1}{4} d^{s^2} n^{s - s^2} \le \frac{1}{4}.$$

The same holds for Y. Then we have probability $> \frac{1}{2}$ both |X| and |Y| are no less than m.

Together with (*) with positive probability X and Y are the required sets.