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May 10nd, Tuesday

Lemma 19.1 (Embedding Lemma). Let H = (A ∪ B,F ) be a bipartite graph in which |A| = a,
|B| = b, and the vertices in B have degree at most r. If G is a graph with a vertex subset U with
|U | = a such that all subsets of U of size r have at least a + b common neighbors, then H is a
subgraph of G.

Definition 19.2. A topological copy of a graph H is a graph formed by replacing edges of H
by internally vertex disjoint paths. If each of the paths replacing the edges of H has exactly t
internal vertices, it is called a t-subdivision of H.

Theorem 19.3. If G is a graph with n vertices and εn2 edges, then G contains a 1-subdivision
of a complete graph with a = ε3/2n1/2 vertices.

Proof. d(G) = 2εn. Let r = 2, t = logn
2 log 1/ε and m = a+

(
a
2

)
, ε ≤ 1/2,

dt

nt−1
−
(
n

r

)(m
n

)t
≥ (2εn)t

nt−1
− n2

2
ε3t = 2tn1/2 − 1

2
n1/2 ≥ n1/2 ≥ ε3/2n1/2.

Therefore we can apply Lemma 18.1 with these parameters to find a vertex subset U of G with
|U | = a such that every pair of vertices in U have at least m common neighbors. Complete the
proof using Lemma 19.1.

N. Alon, M. Krivelevich and B. Sudakov show that an n-vertex graph G with εn2 edges
contains a 1-subdivision of a complete graph with ε

4n
1/2 vertices. The power of ε cannot be

improved.

Definition 19.4. For a graph H, the Ramsey number r(H) is the minimum positive integer N
such that every 2-coloring of the edges of KN contains a monochromatic copy of H.

Definition 19.5. The r-cube Qr is the r-regular graph with 2r vertices whose vertex set consists
of all binary vectors {0, 1}r and two vertices are adjacent if they differ in exactly one coordinate.

Theorem 19.6. r(Qr) ≤ 23r.

Proof. In any 2-edge-coloring of KN , the denser of the two colors has at least 1
2

(
N
2

)
edges. Let

N = 23r, let G be the graph of the densest color, so

d(G) ≥
2× 1

2

(
N
2

)
N

= N − 1 ≥ 2−
4
3N.

Let t = 3
2r, m = 2r, and a = 2r−1, we have

dt

N t−1 −
(
N

r

)(m
N

)t
≥ 2−

4
3
tN −N r−tm

t

r!
≥ 2r − 1 ≥ 2r−1.

Therefore, applying Lemma 18.1 we find a subset U of size 2r−1 such that every set of size r in
U has at least 2r common neighbors. Complete the proof by Lemma 19.1.
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Let G = (V,E), R ∈ V r is a sequence of r vertices of V with replacement N(R) =
⋂
v∈RN(v)

and d(R) = |N(R)|.

Definition 19.7. R is b-rich if d(R) ≥ b and b-poor if d(R) < b. A set Z ⊂ V is (r, b)-rich if
every sequence in Zr is b-rich.

Lemma 19.8 (Two-sided version). Let r, s, t ≥ 1 and let G be bipartite graph with average degree
d and parts U and V of size n. Suppose nr−s+s

2
d−s

2
(t − 1)s < 1

4 . Then there exists X ⊂ U ,

Y ⊂ V of size at least 4−
1
s dsn1−s such that every X and Y are (r, t)-rich in G[X,Y ].

Proof. Let F = {(SU , SV )|SU ∈ U s, SV ∈ V s, and G[SU , SV ] is a complete bipartite graph.} Let
N = |F|, then ∑

S∈Us

d(S) = #{(S, v)|S ∈ U s, v ∈ V, and v ∈ N(S)}

=
∑
v∈V

d(v)s ≥ n ·
(∑

v∈V d(v)

n

)s
= nds,

N =
∑
S∈Us

d(S)s ≥ ns
(∑ d(S)

ns

)s
= ns−s

2

(∑
S∈Us

d(S)

)s
= ns−s

2

(∑
v∈V

d(v)s

)s
≥ ns−s2nsds2 = n2s−s

2
ds

2
.

Uniformly select sequences (SU , SV ) ∈ F , let X = N(SU ), Y = N(SV ). A sequence A ∈ Xr

is t-poor if |N(A ∪ SV )| < t and t-rich otherwise. A sequence A ∈ Xr is t-rich ⇔ |N(A ∪ SV )| ≥
t⇔ |N(A) ∩ Y | ≥ t. The expected number of t-poor sequence in Xr is

1

N
#{(SU , SV , A)|A ∈ N(SU )r, and A is t-poor}

=
1

N

∑
A∈V r

∑
S′∈V s

#{S : S ∈ U s, S ⊂ N(A ∪ S′)}

≤ 1

N
nrns(t− 1)s ≤ ns2−2sd−s2nr+s(t− 1)s <

1

4
.

Therefore the probability that Xr contains a t-poor sequence is less than 1
4 .

A similar statement holds for Y . Then we have with probability > 1
2 in G[X,Y ] X and Y are

both (r, t)-rich. (*)

Let m = 4−
1
s dsn1−s,then

P (|X| < m) =
1

N

∑
S∈V s,d(S)<m

d(S)s <
1

N
nsms ≤ ns2−2sd−s2ns · 1

4
ds

2
ns−s

2 ≤ 1

4
.

The same holds for Y . Then we have probability > 1
2 both |X| and |Y | are no less than m.

Together with (*) with positive probability X and Y are the required sets.
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